Рис. 5.2
Тест на совместную незначимость коэффициентов также можно провести автоматически. Для этого, после того как было оценено исходное уравнение, в меню окна результатов нужно выбрать Тесты – Избыточные переменные.
Рис. 5.3
После этого в меню можно выбрать одну из опций оценивания: оценить сокращенную модель (аналог того теста, который был показан выше) или проверить избыточность переменных с использованием теста Вальда [9].
Результат оценивания с использованием сокращенной модели представлен на рис. 5.4.
Рис. 5.4
При данном методе проверки также рассчитывается F-статистика и ее значение совпадает с тем, что было получено вручную. При этом приводится оцененный вариант короткой модели (модели с ограничением). Нулевая гипотеза состоит в том, что указанные на этапе тестирования переменные нулевые. Для проверки этой гипотезы можно воспользоваться рассчитанным значением F-статистики и сравнить его с критической точкой, как это было проделано, а можно обратить внимание на р-значение = 0,254184, то есть вероятность ошибиться, отвергнув нулевую гипотезу о незначимости коэффициентов, составляет примерно 0,26. Так как р-значение > 0,05 (больше зафиксированного уровня значимости), мы принимаем нулевую гипотезу, указанные коэффициенты не значимы на 5 %-ном уровне, и соответствующие регрессоры нужно исключить из модели. Корректный вариант модели – модель с ограничением.
Аналогично можно провести тест на избыточные переменные, используя тест Вальда (рис. 5.5).
Рис. 5.5
Результаты тестирования полностью совпадают с предыдущими вариантами теста.
6. Проверка правильности спецификации модели (RESET test)
Для проверки правильности спецификации линейной регрессионной модели используется RESET-тест. Он позволяет определить, помогает ли нелинейная комбинация оцененного значения зависимой переменной лучше объяснить изменения самой зависимой переменной. Если качество объяснения при этом улучшается, значит, модель специфицирована неправильно [9].
Проведем RESET-тест для модели
то есть проверим правильность спецификации этой модели [файл с данными wage2.gdt]. Оценим предложенную регрессию и сохраним оцененные значения зависимой переменной. Для этого в окне с результатами оценки выберем пункт меню Сохранить – Расчетные значения.
Рис. 6.1
После этого включим степени расчетных значений зависимой переменной в качестве регрессоров. Как правило, число степеней может равняться числу регрессоров в исходной модели, но начинать можно и с меньшего количества. Добавить новые переменные (степени расчетных значений зависимой переменной) можно через основное меню Добавить – Добавить новую переменную и ввести формулу, можно для четных степеней воспользоваться функцией меню Добавить – Квадраты выделенных переменных, а можно прямо в окне для оценки регрессии выбрать кнопку (+), которая позволит тут же создать новую переменную.
Рис. 6.2
Результат оценки регрессии с учетом степеней расчетных значений зависимой переменной представлен на рис. 6.3.
Рис. 6.3
Как видно из распечатки на рис. 6.3, все коэффициенты в модели стали незначимы, вновь добавленные регрессоры имеют также незначимые коэффициенты. Проведем формальный тест на совместную незначимость с использованием встроенных средств GRETL.
Рис. 6.4
По результатам теста р-значение < 5 %, то есть можно отвергнуть нулевую гипотезу о совместной незначимости коэффициентов при вновь добавленных регрессорах, хотя бы один из коэффициентов при добавленных трех регрессорах значим. Из эмпирических соображений попробуем исключить последний регрессор – четвертую степень для расчетных значений зависимой переменной – и оценим модель без него.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.