Для того чтобы заслужить название «динамической», система Σ должна обладать еще одним свойством. Знание состояния x(t1) и отрезка входного воздействия ω = ω(t1, t2] должно быть необходимым и достаточным условием, позволяющим определить состояние x(t2) = φ(t2; t1, x(t1), ω) каждый раз, когда t1 < t2. Заметим, что в связи с этим придется потребовать, чтобы множество моментов времени Т было упорядоченным, т. е. чтобы в нем было определено направление времени. Обычно упорядоченность множества Т выбирается так, чтобы прошлое предшествовало будущему. Заметим также, что введенное понятие «динамической» системы, грубо говоря, совпадает с понятием «причинной» системы в том смысле, что прошлое влияет на будущее, но не наоборот. Короче говоря, математическое понятие динамической системы служит для описания потока причинно-следственных связей из прошлого в будущее.
Внутренние свойства классической динамической системы отображаются функциями φ и η. Первая функция отображает итоговые свойства на структурном или системном уровне, и, как правило, эти свойства неизменные. Вторая функция описывает процесс наблюдения в виде y(t) = η(t, x(t)) выходных координат х(t) состояния, которая формируется переходной функцией состояния φ вида: x(t) = φ(t; t0, x(t0), ω) X.
Здесь внешнее взаимодействие динамической системы со средой характеризуется функциями ω, γ:
– множество допустимых входных воздействий Ω = {ω: T → U}, где U – множество значений входных воздействий, каждый элемент которого есть u(t) (управление);
– множество выходных (наблюдаемых) величин Г = {γ : T → Y}, где η : T × X → Y; y(t) Y; y(t) = η(t, x(t)); отображение η есть сужение некоторого γ Г на (τ, t].
Согласно сказанному, можно уточнить, что есть управление и как оно реализуется.
Если x(t2) = φ(t2; t1, x(t1), ω), то х(t1) и отрезок входного воздействия ω = ω(t1, t2), включающего входное воздействие U(t), где t [t1, t2], выступают в качестве управлений, когда ω Ω – узкому классу функций.
Таким образом, структурные динамические системы изменяют свое состояние в нужном направлении посредством функции U(t), которая либо задана, либо вводится в систему посредством внешних команд. Так вводится классическая динамическая система. Более подробное изложение можно найти в работе [36].
Суперклассические динамические системы
Структурно-функциональные или суперклассические динамические системы характеризуются наличием: входных воздействий, выходных величин, функциональных свойств подсистем структуры. Таким системам свойственно самообеспечение безопасности движения и эффективности функционирования, реализуемое в подсистемах: стратегического, тактического, оперативного контроля, включая подсистему целеконтроля.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.